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The Interpretation of Freezing Point Lowering Data in Terms of Polymerization 

B Y E D W I N N. LASSETTRE 

Introduction 
In the course of reviewing data on molecular 

weights in solution, a new method of calculating 
equilibrium constants was discovered which 
throws considerable light upon the behavior of 
polymerized compounds in various solvents. 
This method and a few applications are described 
in the following paper. More extensive applica
tions will be published soon in an article in 
Chemical Reviews. 

The investigation of the molecular weights of 
organic compounds in various non-polar sub
stances brought to light the fact that many solutes 
must be considered highly polymerized to account 
for the high molecular weights obtained and for 
the increase of molecular weight with concen
tration. The final result of such investigations 
has been to divide polymerized materials roughly 
into two classes. For substances of the first class 
the molecular weight approaches an upper limit 
with increasing concentration; this class includes 
for example, the aromatic acids whose molecular 
weights approach a value twice the formula 
weight. The molecular weights of substances of 
the second class increase almost linearly with con
centration and apparently approach no limit; 
this class includes phenol and substituted phenols, 
anilides, acid amides, and alcohols. Polymers of 
all of these substances are supposedly held to
gether by hydrogen bonds. The reactions of 
polymerization and depolymerization are ap
parently fast. 

The original problem for which a solution was 
sought was to determine a set of equilibrium con
stants for successive polymerization reactions 
which would account for a linear increase in ap
parent molecular weight with concentration. It 
was found that a unique set of equilibrium con
stants could be produced which would account 
for this state of affairs. The method used is 
quite general and can be applied to any data of 
this type, although it is convenient only when the 
molecular weight data can be expressed by a sim
ple function of the concentration. 

Calculation of Equilibrium Constants When 
the Molecular Weight is a Linear Function of the 

Concentration.—The following set of variables 
is useful for the discussion 

Q = concentration in formula weights/kg. of 
solvent 

JV = concentration in molecular weights/kg. 
of solvent 

m = apparent molecular weight of solute 
JIf = formula weight of solute 

n = m/M = mean polymerization number 
(A) = concentration of species A 

It is clear from these definitions that n = Q/N. 
In the following discussion a molecule of the 

species from which the polymer is constructed 
will be called an element of the polymer, and a 
polymer containing j elements will be called a 
polymer of order j . 

These three hypotheses are made concerning 
the experimental situation: (i) The freezing point 
abnormalities are due to the presence of polymers. 
(ii) The reactions involved are so rapid that 
equilibrium is established completely by the time 
the measurements were made, (iii) The poly
mers obey the law of mass action with all activity 
coefficients unity. 

Let an element of a polymer be designated by 
A and a polymer of order I by A;. The equilibria 
present in the solution can be represented as 

2A T ^ A2, 3A y~*» A3, ...,IA T ~ ^ A; 

Application of the law of mass action to this set of 
equilibria gives 

(A2)AA)2 = K2 (A0/(A)' -K, (1) 

the K's being equilibrium constants. 
Equations (1) are still true if there are several 

polymers, all of order / but differing in structure. 
In case there are isomers, (A;) means the sum of 
the concentrations of all the isomers and Ki is 
the sum of the equilibrium constants for all the 
isomers. 

The concentration Q is obtained by summing 
/(A/) over all I: 

Q = Y^* i /(A,) = ^ * IKixf.x= (A)1K1-I (2) 

where the relations (1) have been used to elimi
nate (Ai). Similarly, 

,-,̂  -S... ̂  C3) 
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In these formulas, k is the order of the largest 
polymer. 

Hypothesis (iii) requires that the constants Ki 
be independent of x. We take the derivative of 
(3) with respect to x and multiply by x, obtaining 

AN 
Ax -E' IKiX1 (4) 

The right-hand member of equation (4) can be im
mediately identified as Q by comparing with (2), 
thus leading to the formula 

x AN/Ax = Q (5) 

and (5), together with the definition of n, leads to 

NA^'n (6) 

We are now discussing the case of a relation be
tween n and Q of the form n = 1 + aQ where a 
is a constant. If n and Q are replaced by the ex
pressions (5) and (6) we obtain 

x AN , . AN 
N Ax d* (7) 

The problem is now reduced to solving this dif
ferential equation. The solution provides a rela
tion between N and x, and if this be expanded 
into a power series in x, the coefficients will be the 
desired constants as is obvious from (3). 

Equation (7) is easily solved and the constant 
of integration can be evaluated by the conditions 

that *™ - = 1 and JV = 0 when * - 0. The final 
X'" *U X 

solution obtained in this way is 
N = xe"N (8) 

The expansion of N in powers of x can be ac
complished most conveniently by use of La
grange's theorem.1 The final result is 

Comparison of this series with (3) shows that 
Ki « (aiy-yil (10) 

This set of constants will account for a linear rela
tion between n and Q and it is the only set of con
stants compatible with hypotheses (i), (ii), and 
(iii) which will suffice, because the solution of the 
differential equation is unique. Furthermore the 
number of constants is infinite and hence an in
finite number of polymers is required; it is to be 
expected that this fact will not be particularly 
significant.2 

(1) Whittaker and Watson, "Modern Analysis," 4th ed., Cam
bridge University Press, 1927, p. 132. 

(2) A rough indication of the region of validity of the relations can 
be obtained by considering a deviation of the type RNP where R 
is a constant and P is an integer. If experimental measurements 

That large polymers should be necessary to ac
count for the molecular weights is not particu
larly surprising nor unlikely. Crystal structure 
investigations have indicated that some crystals, 
such as water, can be regarded as big polymers 
held together by hydrogen bonds, and deviations 
of molecular weights from formula weights are 
large. On the other hand, it is not proposed that 
all deviations from the laws of perfect solution 
should be accounted for by such equilibria, and, 
in fact, it is known that this cannot be the case. 
Systematic deviations occur for virtually all sol
utes at sufficiently high concentrations and for 
many solutes the deviation is proportional to the 
concentration. In the discussion of these prob
lems it is therefore necessary to confine one's 
attention to solutes for which the deviation is so 
large that it can be attributed only to a polymeri
zation. 

Calculation of Equilibrium Constants when the 
Relation is not Linear.—The case in which « is 
not a linear function of Q can be treated also. If 
n be expressed in the form 

» - 1 + !(Q1JV) (11) 

where f(0,0) = 0, and if i(Q,N) be expanded and 
only the first two terms retained, the following 
equation is obtained 

n = 1 + aQ + 0N (12) 

If the substitutions (5) and (6) are made and the 
equation treated as before, the equilibrium con
stants are found to be 

Ki -

1U[CtI + (I- q)0] 
, - Q 

(13) Vi w 
2 = an integer 

and the solution of the differential equation is 
N = *(1 + /JiV) <«+»//» (14) 

The equation (12) can easily be tested by sub
stituting N = Q/n, leading to 

n(n - \)/Q = & + an (15) 
A plot of n{n — 1)/Q vs. n will quickly decide 
whether or not the equation is applicable. Nega
tive values are permitted for /3 provided a + /3 
>0 . When I = 2, K2 = a + /3 and the signi
ficance of the sum of the constants is established. 

Interpretations of the Relations between the 
Equilibrium Constants.—It is not surprising that 
are available from N — 0 to N «* iVo with an accuracy *e, then that 
value of P which makes the deviation largest when N > Wo IS P « 
^- i/log No provided iVo < 1. Under these conditions It can be shown 
that the first P equilibrium constants are unaffected by the deviation 
from linearity while the (P + l)st constant is changed by R/P. 
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relations should exist between the equilibrium 
constants of such closely related substances as a 
series of polymers. The substances most closely 
resembling polymers whose thermodynamic prop
erties have been investigated are the normal 
paraffin hydrocarbons, and the entropies and 
heats of formation of these compounds are known 
to be approximately linear functions of the num
ber of carbon atoms. It is of interest to examine 
the conclusions following from the assumption 
that the partial molal entropies and heats of for
mation of polymers of the type discussed in this 
paper are also linear functions of the number of 
elements of the polymers. This assumption 
leads to the conclusion that the stand
ard free energy change of the reaction 

A, + A = Ai+1 (16) 

is a constant independent of I, say 
AF0 = -RT In /3, and hence the 
equilibrium constant of the reaction 

IA = A1 

tion which represents the variation of the mean 
polymerization number with concentration. 

Application to Freezing Point Data for p-
Nitrophenol in Naphthalene and Discussion of 
Error.—Figure 1 shows a plot of mean polymeri
zation number against concentration for ^-nitro
phenol in naphthalene solution. The data are 
due to Auwers and collaborators,3 and were de
termined by freezing point lowering measure
ments. The different symbols used to designate 
experimental points indicate independent deter
minations. The curve is closely linear up to con
centrations of 20 g./lOO g. solvent and above this 
point does not markedly deviate from linearity. 

K1 = (17) 

Fig. 1, 

The previous deductions of this 
paper will be interpreted by compari
son with this result. 

If in equation (13) a be put equal 
to zero we obtain Kt = /9*_1, which 
is identical with (17). By examining 
(12) we see that in this case the mean 
polymerization number is a linear function of JV. 

The other extreme case is obtained by putting 
0 equal to zero. In this case the equilibrium con
stants are given by (10). The equilibrium con
stant of the reaction (16) is 

and 

±F° = -RT log a - RT[I - 1) log (/ + l)/l (19) 

Equation (19) is the sum of a constant term and a 
term which is zero when / = 1 and increases stead
ily to RT as / becomes large. The term which de
pends on I does not contain an empirical constant 
and hence it seems that it does not depend upon 
the structure of the polymer. This suggests that 
the variable term arises from the entropy change 
rather than from the change in heat content. 

It appears then that a small deviation from the 
hypotheses which lead to equation (17) is suffi
cient to change materially the form of the func-

Polymerization of ^-nitrophenol dissolved in naphthalene, 
in grams/100 grams solvent. 

The terms of the series (9) will be significant only 
when their value exceeds the experimental error 
in the determination of JV. Since it is of interest 
to obtain an estimate of the number of significant 
terms, we can proceed by estimating experimental 
error for a given value of JV and finding how far it 
is possible to go in the series and still have the 
individual terms exceed the estimated experimen
tal error in JV. The highest measured value of 
JV is 0.91 and the point deviates from the straight 
line by 0.06 unit, corresponding to an error in JV 
of approximately 0.02 unit. The value of x 
corresponding to JV = 0.91 is 0.495. The most 
optimistic estimate is obtained by taking x to be 
0.495 and experimental error to be 0.02. The 
sixth term of series (13) exceeds 0.02 while the 
seventh term is less than 0.02. In order to have 
the whole remainder of (9) less than 0.02 it is 
necessary to take terms up to and including 1=9, 

(3) K. Auwers, Z. physik. Chem., 18, 596 (1895); K. Auwers and K. 
Orton, ibid., Sl, 337 (1896); K. Auwers, ibid., SO, 300 (IS(W). 
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From these calculations it seems tha t not more 
than nine terms of series (9) are necessary to ac
count for the observed data and not more than 
the first six terms exceed experimental error. 
The calculations further show tha t the deduction 
of a dependable relationship depends upon the 
data being accurate and extensive. For example, 
if experimental error had been 0.4 (about 0.3%) 
the fourteenth term of the series would still have 
exceeded experimental error.4 

Application to Molecular Weight Data for 
Formanilide and w-Butyramide.—Figure 2 shows 
n against Q for formanilide in ^-xylene as solvent. 
The data are due to Auwers6 and were determined 
by freezing point lowering experiments. The 
curve is evidently not linear, but it can be very 
accurately fitted with equation (12), the con
stants being a = 1.43 and /3 = 3.S0. 

0.0 0.2 0.4 0.6 0.8 1.0 
Q-*-

Fig. 2.—Polymerization of formanilide dissolved 
in ^-xylene. Q is in moles/kg. of solvent. 

Figure 3 shows n against Q for re-butyramide in 
benzene. The data are due to Meldrum and 
Turner6 and were determined from boiling point 
raising experiments. The data are somewhat 
erratic, but are fitted by (12) with a. = 0 and /3 = 
3.5. 

Due to the existence of extensive data on freez
ing point lowering, the relations could be exten

ts Due to the fact that freezing point experiments are not iso
thermal, errors are introduced into the equilibrium constants. From 
the van't Hoff equation, using 5000 calories for AH, it is calculated 
that a change of about 3 % per degree occurs in the equilibrium con
stant of the reaction Ai -f- A = Ai + j . 

(5) K. Auwers, Z. physik. Chem.,\l, 513 (1903). 
(B) A. N. Meldrum and W. E. S. Turner, J. Chtm. Soc, 97, 

1605 (1910). 

sively tested, and they have been found to ac
count for the data in many bu t not in all cases. 
Moreover, the simple approximating function 
(I (i) accounts for a much more extensive group of 
observations than might have been expected. 

t ' l .S 

i.oV. i I 
0.0 0.5 

G - -
Fig. 3.—Polymerization of n-

butyramide in benzene solution, 
Q in moles/liter solvent. 

Application to the Distribution of Polymeriz-
able Materials between Water and an Organic 
Liquid.—The application of this t r ea tment of 
freezing point lowering data should permit the 
prediction of equilibrium constants from the re
sults of distribution experiments, subject to the 
usual hypothesis tha t the molecules are single 
in the water phase and polymerized in the organic 
phase. 

The recent investigations of Philbrick7 have 
indicated tha t the distribution ratio may have 
sudden discontinuities a t very low concentrations. 
The equations developed in the preceding sections 
of this paper would not, of course, account for 
such behavior as this bu t the equations are ca
pable of accounting for some of the high concen
tration data. Table I shows the distribution 
ratio of phenol between water and pentachloro-
ethane8 and the calculated values of the ratio with 
particular values of the parameters a and /3 of 
equation (12). In this table 

, _ concentration of single molecules in organic phase 
concentration of single molecules in water 

and 
n _ formal concentration in organic phase 

formal concentration in water 

The calculated and observed values agree within 
about 1%. 

Other distribution data also can be accounted 
for, but the uncertainty in extrapolation to low 
concentrations makes a decisive selection of con
stants impossible at present. 

(7) F. A. Philbrick, THIS JOURNAL, 56, 2581 (1934). 
(8) W, Herz and W. Rathmann, Z. Elektrochem., 19, 552 (1913). 
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TABLE I 

DISTRIBUTION OP PHENOL BETWEEN PENTACHLOROETHANE 

AND WATER 

k = 1.08S, a = 0.83, 0 = 0 
Q DobsA • Scaled • 

0.0495 1.18 1.17 
.110 1.27 1.28 
.226 1.51 1.51 
.432 1.94 1.92 
.708 2.53 2.56 

1.170 3.51 3.50 

I wish to thank Professor Linus Pauling for 
suggesting this problem, and for his help and en
couragement throughout the work. I wish also 
to thank Professor Roscoe G. Dickinson for the 
many helpful discussions we have had. 

Summary 

1. A method of calculating equilibrium con
stants of polymerization reactions from freezing 
point, boiling point, and distribution data is de
scribed. 

2. The method is applied to various com
pounds and it is shown that the data are often 
fitted by the empirical relation n = 1 -f aQ + 
0N. 

3. The distribution of phenol between penta
chloroethane and water is accurately accounted 
for by the same type of equation as accounts for 
freezing point lowering data. 

PASADENA, CALIF. RECEIVED MARCH 9, 1937 
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The Standard State of Copper. A Study of the Copper-Cupric Electrode 

BY LEON M. ADAMS AND DENTON J. BROWN 

Electrodes composed of all but the softer 
metals have the tendency to show irregularities 
of potential which seem to depend somewhat on 
the previous treatment of the metal. Many 
methods have been tried for eliminating these 
irregularities. In 1914, Lewis and Lacey1 devised 
an electrolytic method. They claim that a metal 
that has been plated upon platinum under high 
current densities from a solution of its salt will 
be strainless. In the case of copper, an acidified 
solution of copper sulfate was used. Copper 
prepared in this manner has a higher reducing 
potential than that of the copper amalgam. 
From theoretical considerations, a two-phase 
amalgam should be strainless and will give the 
potential of the standard state if there is no 
compound formation and if the mercury is not 
appreciably soluble in the metal. The solubility 
of mercury in copper is unknown, but if we assume 
that there is no compound formation, the value 
obtained by Lewis and Lacey would indicate an 
enormous solubility of mercury in copper which 
does not seem reasonable. So any large difference 
would indicate compound formation between 
copper and mercury. There are such compounds 
reported in the literature. 

In this work, an application of von Weimarn's 
law was used in the preparation of the copper 
crystals at 25°. Copper sulfate in silica gels was 

(1) Lewis and I.acey, THIS JOURNAL, 36, 804 (1914). 

reduced by organic reducing agents. The gel 
prevented the mechanical mixing of the copper 
sulfate with the reducing agent so that the rate of 
diffusion controlled the rate of reduction of the 
CuSO4. By this method, it was hoped to secure 
the standard state of metallic copper. 

Materials and Apparatus 

The copper amalgam used was prepared by electrolysis 
of a half molal solution of cupric sulfate, slightly acidified, 
using about five amperes per sq. dm. of mercury surface and 
a copper anode. The amalgam was kept under this solu
tion after preparation. Mereurous sulfate was prepared 
by electrolysis according to the method of Hulett.2 The 
cupric sulfate used had been recrystallized from an acidified 
solution of the c. p. crystals. Conductivity water and dis
tilled mercury were used in preparing the reagents. Silica 
gels were prepared by mixing equal volumes of N acetic 
acid and sodium silicate solution (sp. gr., 1.06). Before 
the mixture gelled, it was made 0.04 N with cupric sulfate. 
After the mixture gelled, a 2 % solution of semicarbazide 
hydrochloride was poured on top of the gel and placed in 
an air-bath maintained at 25 =*= 0.1 °. In about a month, 
the gel was removed with concentrated sodium hydroxide 
solution, and the resulting crystals of copper removed and 
washed with water. Finely divided copper was obtained 
by pouring an ammoniacal solution of cuprous sulfate into 
an excess of dilute sulfuric acid. This was always pre
pared fresh. Measurements were made on a Leeds and 
Northrup "Type K " potentiometer, using a Weston cell 
with a Bureau of Standards certificate. The thermostat 
consisted of a bath of distilled water maintained at 25 =*= 
0.05°. 

(2) Hulett, Pkys. Rev., 32, 32 (1900). 


